Skip to main content
Log in

Endothelial-like cells from the bovine placental cotyledon

  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A cell-line was established from bovine placental cotyledon. When cultured in M199 with 10% fetal bovine serum, this cell-line had a doubling time of about 18 h. With immunohistochemistry, it was demonstrated that this cell-line expressed vimentin and angiotensin-converting enzyme (ACE). While both molecules are expressed in endothelial cells, ACE is usually considered to be a specific marker for endothelial cells. Furthermore, cells were shown to take up Dil-Ac-LDL (acetylated low-density lipoprotein labeled with 1,1′-dioctadecyl-3,3,3′-tetramethylindo-carbocyanine perchlorate). This characteristic feature has been used to identify endothelial cells. Finally, when cultured on matrigel, this cell-line formed tube-like structures similar to those formed by endothelial cells. Tube-formation on matrigel is a physiological property specific to endothelial cells. In conclusion, these three lines of evidence strongly suggest that this cell-line is endothelial cell in nature. Further studies using an endothelial cell-line from bovine placenta may help to elucidate the cause of bovine placental retention, a major cause for economic loss in bovine industry. Furthermore, an endothelial cell-line could be an important tool in research areas such as tissue remodeling, angiogenesis, and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auerbach, R.; Alby, L.; Grieves, J., et al. Monoclonal antibody against angiotensin-converting enzyme: its use as a marker for murine, bovine and human endothelial cells. Proc. Natl. Acad. Sci. USA 79:7891–7895; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Baatout, S.; Cheta, N. Matrigel: a useful tool to study endothelial differentiation Rev. Roum. Med. Int. 34:263–269; 1996.

    CAS  Google Scholar 

  • Bassett, D. L. The changes in the vascular pattern of the ovary of the albino rat during estrous cycle. Am. J. Anat. 73:251–291; 1943.

    Article  Google Scholar 

  • Challier, J. C.; Kacemi, A.; Olive, G. Mixed culture of pericytes and endothelial cells from fetal microvessels of the human placenta. Cell. Mol. Biol. 41:233–241; 1995.

    PubMed  CAS  Google Scholar 

  • Craig, L. E.; Spelman, J. P.; Strandberg, J. D.; Zink, M. C. Endothelial cells from diverse tissues exhibit differences in growth and morphology. Microvasc. Res. 55:65–76; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Denekamp, J. Vasculature as a target for tumor therapy. In: Hammersen, F.; Hudicka, O., ed. Progress in applied microcirculation. Vol. 4. Karger: Basel; 1984;28–38.

    Google Scholar 

  • Feng, S.; Peter, A. T.; Asem, E. K. Establishment of pure culture of distinct cell types from bovine placental cotyledon. Methods Cell Sci., in press.

  • Ferrell, C. L. Placental regulation of fetal growth. In: Campion, D. R.; Hausman, G. J.; Martin, R. J., ed. Animal growth regulation. New York: Plenum; 1989:1–10.

    Google Scholar 

  • Folkman, J.; Klagsbrun, M. Angiogenic factors. Science 235:442–447; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Grant, D. S.; Tashiro, K.; Segui-Real, B.; Yamada, Y.; Martin, G. R.; Kleinman, H. K. Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58:933–943; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, E. A.; Nachman, R.; Becker, C.; Mimick, R. Culture of human endothelial cells. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52:2745–2756; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Kacemi, A.; Challier, J.-C.; Graltier, M.; Olive, G. Culture of endothelial cells from human placental microvessels. Cell Tissue Res. 283:183–190; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Klagsbrun, M.; D'Amore, P.D. Regulators of angiogenesis. Annu. Rev. Physiol. 53:217–239; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, H. K.; McGarvey, M. L.; Hassell, J. R.; Star, V. L.; Cannon, F. B.; Laurie, G. W.; Martin, G. R. Basement membrane complexes with biological activities. Biochemistry 25:312–318; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, Y.; Kleinman, H. K.; Martin, G. R.; Lawley, T. J. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary like structures. J. Cell. Biol. 107: 1589–1598; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Madri, J. A.; Williams, S. K. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell. Biol. 97:153–165; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Meegdes, B. H. L. M.; Ingenhoes, R.; Peeters, L. L. H.; Exalto, N. Early pregnancy wastage: relationship between chorionic vascularization and embryonic development. Fertil. Steril. 49:216–220; 1988.

    PubMed  CAS  Google Scholar 

  • Moll, R.; Franke, W. W.; Schiller, D. L.; Geiger, B.; Krepler, R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R.; Orci, L.; Vassalli, P. In vitro rapid organization of endothelial cells into capillary-like networks promoted by collagen matrices. J. Cell. Biol. 97:1648–1652; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Ono, M.; Izumi, H.; Yoshida, S., et al. Angiogenesis as a new target for cancer treatment. Cancer Chemother. Pharmacol. 38:S78-S82; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, L. P.; Killilea, S. D.; Redmer, D. A. Angiogenesis in the female reproductive system. FASEB J. 6:886–892; 1992.

    PubMed  CAS  Google Scholar 

  • Reynolds, L. P.; Redmer D. A. Secretion of angiogenic activity by placenta tissues of cows at several stages of gestation. J. Reprod. Fertil. 83: 497–502; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Rexroad, C. E.; Casida, L. E.; Tyler, W. J. Crown-rump length of fetuses in purebred Holstein-Friesian cows. J Dairy Sci. 57:346–347; 1974.

    Article  Google Scholar 

  • Taub, M.; Wang, Y.; Szcesney, T. M.; Keinman, K. Epidermal growth factor or transforming growth factor alpha is required for kidney tubulogenesis in matrigel cultures in serum-free medium. Proc. Natl. Acad. Sci. USA 87:4000–4002; 1990.

    Article  Google Scholar 

  • Voyta, J. C.; Netland, P. A.; Via, D. P.; Zetter, B. R. Specific labeling of endothelial cells fluorescent acetylated low density lipoprotein. J. Cell. Biol. 99:81A; 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, S., Peter, A.T. & Asem, E.K. Endothelial-like cells from the bovine placental cotyledon. In Vitro Cell.Dev.Biol.-Animal 36, 527–531 (2000). https://doi.org/10.1290/1071-2690(2000)036<0527:ELCFTB>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2000)036<0527:ELCFTB>2.0.CO;2

Key words

Navigation